Odd values of the partition function

نویسنده

  • Ken Ono
چکیده

Let p(n) denote the number of partitions of an integer n. Recently the author has shown that in any arithmetic progression r (mod t), there exist infinitely many N for which p(N) is even, and there are infinitely many M for which p(M) is odd, provided there is at least one such M. Here we construct finite sets of integers Mi for which p(Mi) is odd for an odd number of i. Whereas Euler’s recurrence allows us to find odd values of p(n) when we already have one, the methods we describe do not rely on already having an odd value of p(n). A partition of a non-negative integer n is any non-increasing sequence of positive integers whose sum is n, and let p(n) denote the number of partitions of n. Euler’s generating function for p(n) is given by the infinite product:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coefficients of Half-integral Weight Modular Forms

In this paper we study the distribution of the coefficients a(n) of half integral weight modular forms modulo odd integers M . As a consequence we obtain improvements of indivisibility results for the central critical values of quadratic twists of L-functions associated with integral weight newforms established in [O-S]. Moreover, we find a simple criterion for proving cases of Newman’s conject...

متن کامل

Odd-flavored QCD3 and Random Matrix Theory

We consider QCD3 with an odd number of flavors in the mesoscopic scaling region where the field theory finite-volume partition function is equivalent to a random matrix theory partition function. We argue that the theory is parity invariant at the classical level if an odd number of masses are zero. By introducing so-called pseudo-orthogonal polynomials we are able to relate the kernel to the k...

متن کامل

On a Partition Function of Richard Stanley

In this paper, we examine partitions π classified according to the number r(π) of odd parts in π and s(π) the number of odd parts in π′, the conjugate of π. The generating function for such partitions is obtained when the parts of π are all 5 N . From this a variety of corollaries follow including a Ramanujan type congruence for Stanley’s partition function t(n).

متن کامل

Skolem Odd Difference Mean Graphs

In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...

متن کامل

On Stanley's Partition Function

Stanley defined a partition function t(n) as the number of partitions λ of n such that the number of odd parts of λ is congruent to the number of odd parts of the conjugate partition λ modulo 4. We show that t(n) equals the number of partitions of n with an even number of hooks of even length. We derive a closed-form formula for the generating function for the numbers p(n)− t(n). As a consequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 169  شماره 

صفحات  -

تاریخ انتشار 1997